The theorem that $\binom {n} {k} = \frac {n!} {k! (n-k)!}$ already assumes $0!$ is defined to be $1$. Otherwise this would be restricted to $0 <k < n$. A reason that we do define $0!$ to be $1$ is so that.
The theorem that $\binom {n} {k} = \frac {n!} {k! (n-k)!}$ already assumes $0!$ is defined to be $1$. Otherwise this would be restricted to $0 <k < n$. A reason that we do define $0!$ to be $1$ is so that.